Paper ID: 2302.11457

Semantic Information Marketing in The Metaverse: A Learning-Based Contract Theory Framework

Ismail Lotfi, Dusit Niyato, Sumei Sun, Dong In Kim, Xuemin Shen

In this paper, we address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data to help creating and rendering the digital copy of the physical world in the Metaverse. Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices. Nevertheless, mechanisms to hire sensing IoT devices to share their data with the VSP and then deliver the constructed digital twin to the Metaverse users are vulnerable to adverse selection problem. The adverse selection problem, which is caused by information asymmetry between the system entities, becomes harder to solve when the private information of the different entities are multi-dimensional. We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem. To demonstrate the effectiveness of our algorithm, we conduct extensive simulations and measure several key performance metrics of the contract for the Metaverse. Our results show that our designed iterative contract is able to incentivize the participants to interact truthfully, which maximizes the profit of the VSP with minimal individual rationality (IR) and incentive compatibility (IC) violation rates. Furthermore, the proposed learning-based iterative contract framework has limited access to the private information of the participants, which is to the best of our knowledge, the first of its kind in addressing the problem of adverse selection in incentive mechanisms.

Submitted: Feb 22, 2023