Paper ID: 2302.14188
Exposure-Based Multi-Agent Inspection of a Tumbling Target Using Deep Reinforcement Learning
Joshua Aurand, Steven Cutlip, Henry Lei, Kendra Lang, Sean Phillips
As space becomes more congested, on orbit inspection is an increasingly relevant activity whether to observe a defunct satellite for planning repairs or to de-orbit it. However, the task of on orbit inspection itself is challenging, typically requiring the careful coordination of multiple observer satellites. This is complicated by a highly nonlinear environment where the target may be unknown or moving unpredictably without time for continuous command and control from the ground. There is a need for autonomous, robust, decentralized solutions to the inspection task. To achieve this, we consider a hierarchical, learned approach for the decentralized planning of multi-agent inspection of a tumbling target. Our solution consists of two components: a viewpoint or high-level planner trained using deep reinforcement learning and a navigation planner handling point-to-point navigation between pre-specified viewpoints. We present a novel problem formulation and methodology that is suitable not only to reinforcement learning-derived robust policies, but extendable to unknown target geometries and higher fidelity information theoretic objectives received directly from sensor inputs. Operating under limited information, our trained multi-agent high-level policies successfully contextualize information within the global hierarchical environment and are correspondingly able to inspect over 90% of non-convex tumbling targets, even in the absence of additional agent attitude control.
Submitted: Feb 27, 2023