Paper ID: 2303.01879

Low-Complexity Audio Embedding Extractors

Florian Schmid, Khaled Koutini, Gerhard Widmer

Solving tasks such as speaker recognition, music classification, or semantic audio event tagging with deep learning models typically requires computationally demanding networks. General-purpose audio embeddings (GPAEs) are dense representations of audio signals that allow lightweight, shallow classifiers to tackle various audio tasks. The idea is that a single complex feature extractor would extract dense GPAEs, while shallow MLPs can produce task-specific predictions. If the extracted dense representations are general enough to allow the simple downstream classifiers to generalize to a variety of tasks in the audio domain, a single costly forward pass suffices to solve multiple tasks in parallel. In this work, we try to reduce the cost of GPAE extractors to make them suitable for resource-constrained devices. We use efficient MobileNets trained on AudioSet using Knowledge Distillation from a Transformer ensemble as efficient GPAE extractors. We explore how to obtain high-quality GPAEs from the model, study how model complexity relates to the quality of extracted GPAEs, and conclude that low-complexity models can generate competitive GPAEs, paving the way for analyzing audio streams on edge devices w.r.t. multiple audio classification and recognition tasks.

Submitted: Mar 3, 2023