Paper ID: 2303.09054
FindView: Precise Target View Localization Task for Look Around Agents
Haruya Ishikawa, Yoshimitsu Aoki
With the increase in demands for service robots and automated inspection, agents need to localize in its surrounding environment to achieve more natural communication with humans by shared contexts. In this work, we propose a novel but straightforward task of precise target view localization for look around agents called the FindView task. This task imitates the movements of PTZ cameras or user interfaces for 360 degree mediums, where the observer must "look around" to find a view that exactly matches the target. To solve this task, we introduce a rule-based agent that heuristically finds the optimal view and a policy learning agent that employs reinforcement learning to learn by interacting with the 360 degree scene. Through extensive evaluations and benchmarks, we conclude that learned methods have many advantages, in particular precise localization that is robust to corruption and can be easily deployed in novel scenes.
Submitted: Mar 16, 2023