Paper ID: 2303.11127

MT-SNN: Enhance Spiking Neural Network with Multiple Thresholds

Xiaoting Wang, Yanxiang Zhang

Spiking neural networks (SNNs) present a promising energy efficient alternative to traditional Artificial Neural Networks (ANNs) due to their multiplication-free operations enabled by binarized intermediate activations. However, this binarization leads to precision loss, hindering the SNN performance. In this paper, we introduce Multiple Threshold (MT) approaches to significantly enhance SNN accuracy by mitigating precision loss. We propose two distinct modes for MT implementation, depending on the membrane update rule: parallel mode and cascade mode. MT-SNN models can be efficiently trained on standard hardwares like GPUs and TPUs, while retaining the multiplication-free advantage crucial for deployment on neuromorphic devices. Our extensive experiments on CIFAR10, CIFAR100, ImageNet, and DVS-CIFAR10 datasets demonstrate that both MT modes substantially improve the performance of single-threshold SNNs, achieving higher accuracy with fewer time steps and comparable energy consumption. Moreover, MT-SNNs outperform state-of-the-art (SOTA) results. Notably, with MT, a Parametric-Leaky-Integrate-Fire (PLIF) based ResNet-34 architecture reaches 72.17\% accuracy on ImageNet with a single time step, surpassing the previous SOTA by 2.75\% despite using 4 steps.

Submitted: Mar 20, 2023