Paper ID: 2303.13466
Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study
Sonish Sivarajkumar, Fengyi Gao, Parker E. Denny, Bayan M. Aldhahwani, Shyam Visweswaran, Allyn Bove, Yanshan Wang
Post-stroke patient rehabilitation requires precise, personalized treatment plans. Natural Language Processing (NLP) offers potential to extract valuable exercise information from clinical notes, aiding in the development of more effective rehabilitation strategies. Objective: This study aims to develop and evaluate a variety of NLP algorithms to extract and categorize physical rehabilitation exercise information from the clinical notes of post-stroke patients treated at the University of Pittsburgh Medical Center. A cohort of 13,605 patients diagnosed with stroke was identified, and their clinical notes containing rehabilitation therapy notes were retrieved. A comprehensive clinical ontology was created to represent various aspects of physical rehabilitation exercises. State-of-the-art NLP algorithms were then developed and compared, including rule-based, machine learning-based algorithms, and large language model (LLM)-based algorithms (ChatGPT). Analysis was conducted on a dataset comprising 23,724 notes with detailed demographic and clinical characteristics. The rule-based NLP algorithm demonstrated superior performance in most areas, particularly in detecting the 'Right Side' location with an F1 score of 0.975, outperforming Gradient Boosting by 0.063. Gradient Boosting excelled in 'Lower Extremity' location detection (F1 score: 0.978), surpassing rule-based NLP by 0.023. It also showed notable performance in 'Passive Range of Motion' with an F1 score of 0.970, a 0.032 improvement over rule-based NLP. The rule-based algorithm efficiently handled 'Duration', 'Sets', and 'Reps' with F1 scores up to 0.65. LLM-based NLP, particularly ChatGPT with few-shot prompts, achieved high recall but generally lower precision and F1 scores. However, it notably excelled in 'Backward Plane' motion detection, achieving an F1 score of 0.846, surpassing the rule-based algorithm's 0.720.
Submitted: Mar 22, 2023