Paper ID: 2303.15772
Ecosystem Graphs: The Social Footprint of Foundation Models
Rishi Bommasani, Dilara Soylu, Thomas I. Liao, Kathleen A. Creel, Percy Liang
Foundation models (e.g. ChatGPT, StableDiffusion) pervasively influence society, warranting immediate social attention. While the models themselves garner much attention, to accurately characterize their impact, we must consider the broader sociotechnical ecosystem. We propose Ecosystem Graphs as a documentation framework to transparently centralize knowledge of this ecosystem. Ecosystem Graphs is composed of assets (datasets, models, applications) linked together by dependencies that indicate technical (e.g. how Bing relies on GPT-4) and social (e.g. how Microsoft relies on OpenAI) relationships. To supplement the graph structure, each asset is further enriched with fine-grained metadata (e.g. the license or training emissions). We document the ecosystem extensively at https://crfm.stanford.edu/ecosystem-graphs/. As of March 16, 2023, we annotate 262 assets (64 datasets, 128 models, 70 applications) from 63 organizations linked by 356 dependencies. We show Ecosystem Graphs functions as a powerful abstraction and interface for achieving the minimum transparency required to address myriad use cases. Therefore, we envision Ecosystem Graphs will be a community-maintained resource that provides value to stakeholders spanning AI researchers, industry professionals, social scientists, auditors and policymakers.
Submitted: Mar 28, 2023