Paper ID: 2303.17316
Masked Autoencoders as Image Processors
Huiyu Duan, Wei Shen, Xiongkuo Min, Danyang Tu, Long Teng, Jia Wang, Guangtao Zhai
Transformers have shown significant effectiveness for various vision tasks including both high-level vision and low-level vision. Recently, masked autoencoders (MAE) for feature pre-training have further unleashed the potential of Transformers, leading to state-of-the-art performances on various high-level vision tasks. However, the significance of MAE pre-training on low-level vision tasks has not been sufficiently explored. In this paper, we show that masked autoencoders are also scalable self-supervised learners for image processing tasks. We first present an efficient Transformer model considering both channel attention and shifted-window-based self-attention termed CSformer. Then we develop an effective MAE architecture for image processing (MAEIP) tasks. Extensive experimental results show that with the help of MAEIP pre-training, our proposed CSformer achieves state-of-the-art performance on various image processing tasks, including Gaussian denoising, real image denoising, single-image motion deblurring, defocus deblurring, and image deraining.
Submitted: Mar 30, 2023