Paper ID: 2303.17787
A Hierarchical Approach to Optimal Flow-Based Routing and Coordination of Connected and Automated Vehicles
Heeseung Bang, Andreas A. Malikopoulos
This paper addresses the challenge of generating optimal vehicle flow at the macroscopic level. Although several studies have focused on optimizing vehicle flow, little attention has been given to ensuring it can be practically achieved. To overcome this issue, we propose a route-recovery and eco-driving strategy for connected and automated vehicles (CAVs) that guarantees optimal flow generation. Our approach involves identifying the optimal vehicle flow that minimizes total travel time, given the constant travel demands in urban areas. We then develop a heuristic route-recovery algorithm to assign routes to CAVs. Finally, we present an efficient coordination framework to minimize the energy consumption of CAVs while safely crossing intersections. The proposed method can effectively generate optimal vehicle flow and potentially reduce travel time and energy consumption in urban areas.
Submitted: Mar 31, 2023