Paper ID: 2303.17808

Generalized Anthropomorphic Functional Grasping with Minimal Demonstrations

Wei Wei, Peng Wang, Sizhe Wang

This article investigates the challenge of achieving functional tool-use grasping with high-DoF anthropomorphic hands, with the aim of enabling anthropomorphic hands to perform tasks that require human-like manipulation and tool-use. However, accomplishing human-like grasping in real robots present many challenges, including obtaining diverse functional grasps for a wide variety of objects, handling generalization ability for kinematically diverse robot hands and precisely completing object shapes from a single-view perception. To tackle these challenges, we propose a six-step grasp synthesis algorithm based on fine-grained contact modeling that generates physically plausible and human-like functional grasps for category-level objects with minimal human demonstrations. With the contact-based optimization and learned dense shape correspondence, the proposed algorithm is adaptable to various objects in same category and a board range of robot hand models. To further demonstrate the robustness of the framework, over 10K functional grasps are synthesized to train our neural network, named DexFG-Net, which generates diverse sets of human-like functional grasps based on the reconstructed object model produced by a shape completion module. The proposed framework is extensively validated in simulation and on a real robot platform. Simulation experiments demonstrate that our method outperforms baseline methods by a large margin in terms of grasp functionality and success rate. Real robot experiments show that our method achieved an overall success rate of 79\% and 68\% for tool-use grasp on 3-D printed and real test objects, respectively, using a 5-Finger Schunk Hand. The experimental results indicate a step towards human-like grasping with anthropomorphic hands.

Submitted: Mar 31, 2023