Paper ID: 2304.04005

A new transformation for embedded convolutional neural network approach toward real-time servo motor overload fault-detection

Seyed Mohammad Hossein Abedy Nejad, Mohammad Amin Behzadi, Abdolrahim Taheri

Overloading in DC servo motors is a major concern in industries, as many companies face the problem of finding expert operators, and also human monitoring may not be an effective solution. Therefore, this paper proposed an embedded Artificial intelligence (AI) approach using a Convolutional Neural Network (CNN) using a new transformation to extract faults from real-time input signals without human interference. Our main purpose is to extract as many as possible features from the input signal to achieve a relaxed dataset that results in an effective but compact network to provide real-time fault detection even in a low-memory microcontroller. Besides, fault detection method a synchronous dual-motor system is also proposed to take action in faulty events. To fulfill this intention, a one-dimensional input signal from the output current of each DC servo motor is monitored and transformed into a 3d stack of data and then the CNN is implemented into the processor to detect any fault corresponding to overloading, finally experimental setup results in 99.9997% accuracy during testing for a model with nearly 8000 parameters. In addition, the proposed dual-motor system could achieve overload reduction and provide a fault-tolerant system and it is shown that this system also takes advantage of less energy consumption.

Submitted: Apr 8, 2023