Paper ID: 2304.04207
Scalable Multiple Patterning Layout Decomposition Implemented by a Distribution Evolutionary Algorithm
Yu Chen, Yongjian Xu, Ning Xu
As the feature size of semiconductor technology shrinks to 10 nm and beyond, the multiple patterning lithography (MPL) attracts more attention from the industry. In this paper, we model the layout decomposition of MPL as a generalized graph coloring problem, which is addressed by a distribution evolutionary algorithm based on a population of probabilistic model (DEA-PPM). DEA-PPM can strike a balance between decomposition results and running time, being scalable for varied settings of mask number and lithography resolution. Due to its robustness of decomposition results, this could be an alternative technique for multiple patterning layout decomposition in next-generation technology nodes.
Submitted: Apr 9, 2023