Paper ID: 2304.14520

Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol Particles for Frontier Exploration

Alexander Kyuroson, Niklas Dahlquist, Nikolaos Stathoulopoulos, Vignesh Kottayam Viswanathan, Anton Koval, George Nikolakopoulos

Algorithms for autonomous navigation in environments without Global Navigation Satellite System (GNSS) coverage mainly rely on onboard perception systems. These systems commonly incorporate sensors like cameras and Light Detection and Rangings (LiDARs), the performance of which may degrade in the presence of aerosol particles. Thus, there is a need of fusing acquired data from these sensors with data from Radio Detection and Rangings (RADARs) which can penetrate through such particles. Overall, this will improve the performance of localization and collision avoidance algorithms under such environmental conditions. This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles. A detailed description of the onboard sensors and the environment, where the dataset is collected are presented to enable full evaluation of acquired data. Furthermore, the dataset contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format to facilitate the evaluation of navigation, and localization algorithms in such environments. In contrast to the existing datasets, the focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data. Therefore, to validate the dataset, a preliminary comparison of odometry from onboard LiDARs is presented.

Submitted: Apr 27, 2023