Paper ID: 2305.00911

SRPT vs Smith Predictor for Vehicle Teleoperation

Jai Prakash, Michele Vignati, Edoardo Sabbioni

Vehicle teleoperation has potential applications in fallback solutions for autonomous vehicles, remote delivery services, and hazardous operations. However, network delays and limited situational awareness can compromise teleoperation performance and increase the cognitive workload of human operators. To address these issues, we previously introduced the novel successive reference pose tracking (SRPT) approach, which transmits successive reference poses to the vehicle instead of steering commands. This paper compares the stability and performance of SRPT with Smith predictor-based approaches for direct vehicle teleoperation in challenging scenarios. The Smith predictor approach is further categorized, one with Lookahead driver and second with Stanley driver. Simulations are conducted in a Simulink environment, considering variable network delays and different vehicle speeds, and include maneuvers such as tight corners, slalom, low-adhesion roads, and strong crosswinds. The results show that the SRPT approach significantly improves stability and reference tracking performance, with negligible effect of network delays on path tracking. Our findings demonstrate the effectiveness of SRPT in eliminating the detrimental effect of network delays in vehicle teleoperation.

Submitted: Apr 27, 2023