Paper ID: 2305.02017
Deep Learning-Based Multiband Signal Fusion for 3-D SAR Super-Resolution
Josiah Smith, Murat Torlak
Three-dimensional (3-D) synthetic aperture radar (SAR) is widely used in many security and industrial applications requiring high-resolution imaging of concealed or occluded objects. The ability to resolve intricate 3-D targets is essential to the performance of such applications and depends directly on system bandwidth. However, because high-bandwidth systems face several prohibitive hurdles, an alternative solution is to operate multiple radars at distinct frequency bands and fuse the multiband signals. Current multiband signal fusion methods assume a simple target model and a small number of point reflectors, which is invalid for realistic security screening and industrial imaging scenarios wherein the target model effectively consists of a large number of reflectors. To the best of our knowledge, this study presents the first use of deep learning for multiband signal fusion. The proposed network, called kR-Net, employs a hybrid, dual-domain complex-valued convolutional neural network (CV-CNN) to fuse multiband signals and impute the missing samples in the frequency gaps between subbands. By exploiting the relationships in both the wavenumber domain and wavenumber spectral domain, the proposed framework overcomes the drawbacks of existing multiband imaging techniques for realistic scenarios at a fraction of the computation time of existing multiband fusion algorithms. Our method achieves high-resolution imaging of intricate targets previously impossible using conventional techniques and enables finer resolution capacity for concealed weapon detection and occluded object classification using multiband signaling without requiring more advanced hardware. Furthermore, a fully integrated multiband imaging system is developed using commercially available millimeter-wave (mmWave) radars for efficient multiband imaging.
Submitted: May 3, 2023