Paper ID: 2305.15087
Pento-DIARef: A Diagnostic Dataset for Learning the Incremental Algorithm for Referring Expression Generation from Examples
Philipp Sadler, David Schlangen
NLP tasks are typically defined extensionally through datasets containing example instantiations (e.g., pairs of image i and text t), but motivated intensionally through capabilities invoked in verbal descriptions of the task (e.g., "t is a description of i, for which the content of i needs to be recognised and understood"). We present Pento-DIARef, a diagnostic dataset in a visual domain of puzzle pieces where referring expressions are generated by a well-known symbolic algorithm (the "Incremental Algorithm"), which itself is motivated by appeal to a hypothesised capability (eliminating distractors through application of Gricean maxims). Our question then is whether the extensional description (the dataset) is sufficient for a neural model to pick up the underlying regularity and exhibit this capability given the simple task definition of producing expressions from visual inputs. We find that a model supported by a vision detection step and a targeted data generation scheme achieves an almost perfect BLEU@1 score and sentence accuracy, whereas simpler baselines do not.
Submitted: May 24, 2023