Paper ID: 2305.15557

Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence

Riccardo Bonalli, Alessandro Rudi

We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of multi-dimensional non-linear stochastic differential equations, which relies upon discrete-time observations of the state. The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations, yielding theoretical estimates of non-asymptotic learning rates which, unlike previous works, become increasingly tighter when the regularity of the unknown drift and diffusion coefficients becomes higher. Our method being kernel-based, offline pre-processing may be profitably leveraged to enable efficient numerical implementation, offering excellent balance between precision and computational complexity.

Submitted: May 24, 2023