Paper ID: 2305.17318

Radar Enlighten the Dark: Enhancing Low-Visibility Perception for Automated Vehicles with Camera-Radar Fusion

Can Cui, Yunsheng Ma, Juanwu Lu, Ziran Wang

Sensor fusion is a crucial augmentation technique for improving the accuracy and reliability of perception systems for automated vehicles under diverse driving conditions. However, adverse weather and low-light conditions remain challenging, where sensor performance degrades significantly, exposing vehicle safety to potential risks. Advanced sensors such as LiDARs can help mitigate the issue but with extremely high marginal costs. In this paper, we propose a novel transformer-based 3D object detection model "REDFormer" to tackle low visibility conditions, exploiting the power of a more practical and cost-effective solution by leveraging bird's-eye-view camera-radar fusion. Using the nuScenes dataset with multi-radar point clouds, weather information, and time-of-day data, our model outperforms state-of-the-art (SOTA) models on classification and detection accuracy. Finally, we provide extensive ablation studies of each model component on their contributions to address the above-mentioned challenges. Particularly, it is shown in the experiments that our model achieves a significant performance improvement over the baseline model in low-visibility scenarios, specifically exhibiting a 31.31% increase in rainy scenes and a 46.99% enhancement in nighttime scenes.The source code of this study is publicly available.

Submitted: May 27, 2023