Paper ID: 2305.18226

HowkGPT: Investigating the Detection of ChatGPT-generated University Student Homework through Context-Aware Perplexity Analysis

Christoforos Vasilatos, Manaar Alam, Talal Rahwan, Yasir Zaki, Michail Maniatakos

As the use of Large Language Models (LLMs) in text generation tasks proliferates, concerns arise over their potential to compromise academic integrity. The education sector currently tussles with distinguishing student-authored homework assignments from AI-generated ones. This paper addresses the challenge by introducing HowkGPT, designed to identify homework assignments generated by AI. HowkGPT is built upon a dataset of academic assignments and accompanying metadata [17] and employs a pretrained LLM to compute perplexity scores for student-authored and ChatGPT-generated responses. These scores then assist in establishing a threshold for discerning the origin of a submitted assignment. Given the specificity and contextual nature of academic work, HowkGPT further refines its analysis by defining category-specific thresholds derived from the metadata, enhancing the precision of the detection. This study emphasizes the critical need for effective strategies to uphold academic integrity amidst the growing influence of LLMs and provides an approach to ensuring fair and accurate grading in educational institutions.

Submitted: May 26, 2023