Paper ID: 2306.02326

Cross-LKTCN: Modern Convolution Utilizing Cross-Variable Dependency for Multivariate Time Series Forecasting Dependency for Multivariate Time Series Forecasting

Donghao Luo, Xue Wang

The past few years have witnessed the rapid development in multivariate time series forecasting. The key to accurate forecasting results is capturing the long-term dependency between each time step (cross-time dependency) and modeling the complex dependency between each variable (cross-variable dependency) in multivariate time series. However, recent methods mainly focus on the cross-time dependency but seldom consider the cross-variable dependency. To fill this gap, we find that convolution, a traditional technique but recently losing steam in time series forecasting, meets the needs of respectively capturing the cross-time and cross-variable dependency. Based on this finding, we propose a modern pure convolution structure, namely Cross-LKTCN, to better utilize both cross-time and cross-variable dependency for time series forecasting. Specifically in each Cross-LKTCN block, a depth-wise large kernel convolution with large receptive field is proposed to capture cross-time dependency, and then two successive point-wise group convolution feed forward networks are proposed to capture cross-variable dependency. Experimental results on real-world benchmarks show that Cross-LKTCN achieves state-of-the-art forecasting performance and improves the forecasting accuracy significantly compared with existing convolutional-based models and cross-variable methods.

Submitted: Jun 4, 2023