Paper ID: 2306.12058
Beyond Learned Metadata-based Raw Image Reconstruction
Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui Chau, Alex C. Kot, Bihan Wen
While raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels, they are not widely adopted by general users due to their substantial storage requirements. Very recent studies propose to compress raw images by designing sampling masks within the pixel space of the raw image. However, these approaches often leave space for pursuing more effective image representations and compact metadata. In this work, we propose a novel framework that learns a compact representation in the latent space, serving as metadata, in an end-to-end manner. Compared with lossy image compression, we analyze the intrinsic difference of the raw image reconstruction task caused by rich information from the sRGB image. Based on the analysis, a novel backbone design with asymmetric and hybrid spatial feature resolutions is proposed, which significantly improves the rate-distortion performance. Besides, we propose a novel design of the context model, which can better predict the order masks of encoding/decoding based on both the sRGB image and the masks of already processed features. Benefited from the better modeling of the correlation between order masks, the already processed information can be better utilized. Moreover, a novel sRGB-guided adaptive quantization precision strategy, which dynamically assigns varying levels of quantization precision to different regions, further enhances the representation ability of the model. Finally, based on the iterative properties of the proposed context model, we propose a novel strategy to achieve variable bit rates using a single model. This strategy allows for the continuous convergence of a wide range of bit rates. Extensive experimental results demonstrate that the proposed method can achieve better reconstruction quality with a smaller metadata size.
Submitted: Jun 21, 2023