Paper ID: 2306.14534

CEIL: Generalized Contextual Imitation Learning

Jinxin Liu, Li He, Yachen Kang, Zifeng Zhuang, Donglin Wang, Huazhe Xu

In this paper, we present \textbf{C}ont\textbf{E}xtual \textbf{I}mitation \textbf{L}earning~(CEIL), a general and broadly applicable algorithm for imitation learning (IL). Inspired by the formulation of hindsight information matching, we derive CEIL by explicitly learning a hindsight embedding function together with a contextual policy using the hindsight embeddings. To achieve the expert matching objective for IL, we advocate for optimizing a contextual variable such that it biases the contextual policy towards mimicking expert behaviors. Beyond the typical learning from demonstrations (LfD) setting, CEIL is a generalist that can be effectively applied to multiple settings including: 1)~learning from observations (LfO), 2)~offline IL, 3)~cross-domain IL (mismatched experts), and 4) one-shot IL settings. Empirically, we evaluate CEIL on the popular MuJoCo tasks (online) and the D4RL dataset (offline). Compared to prior state-of-the-art baselines, we show that CEIL is more sample-efficient in most online IL tasks and achieves better or competitive performances in offline tasks.

Submitted: Jun 26, 2023