Paper ID: 2307.08876

AI for the Generation and Testing of Ideas Towards an AI Supported Knowledge Development Environment

Ted Selker

New systems employ Machine Learning to sift through large knowledge sources, creating flexible Large Language Models. These models discern context and predict sequential information in various communication forms. Generative AI, leveraging Transformers, generates textual or visual outputs mimicking human responses. It proposes one or multiple contextually feasible solutions for a user to contemplate. However, generative AI does not currently support traceability of ideas, a useful feature provided by search engines indicating origin of information. The narrative style of generative AI has gained positive reception. People learn from stories. Yet, early ChatGPT efforts had difficulty with truth, reference, calculations, and aspects like accurate maps. Current capabilities of referencing locations and linking to apps seem to be better catered by the link-centric search methods we've used for two decades. Deploying truly believable solutions extends beyond simulating contextual relevance as done by generative AI. Combining the creativity of generative AI with the provenance of internet sources in hybrid scenarios could enhance internet usage. Generative AI, viewed as drafts, stimulates thinking, offering alternative ideas for final versions or actions. Scenarios for information requests are considered. We discuss how generative AI can boost idea generation by eliminating human bias. We also describe how search can verify facts, logic, and context. The user evaluates these generated ideas for selection and usage. This paper introduces a system for knowledge workers, Generate And Search Test, enabling individuals to efficiently create solutions previously requiring top collaborations of experts.

Submitted: Jul 17, 2023