Paper ID: 2308.10041
Computing the Vapnik Chervonenkis Dimension for Non-Discrete Settings
Mohammed Nechba, Mouhajir Mohamed, Sedjari Yassine
In 1984, Valiant [ 7 ] introduced the Probably Approximately Correct (PAC) learning framework for boolean function classes. Blumer et al. [ 2] extended this model in 1989 by introducing the VC dimension as a tool to characterize the learnability of PAC. The VC dimension was based on the work of Vapnik and Chervonenkis in 1971 [8 ], who introduced a tool called the growth function to characterize the shattering property. Researchers have since determined the VC dimension for specific classes, and efforts have been made to develop an algorithm that can calculate the VC dimension for any concept class. In 1991, Linial, Mansour, and Rivest [4] presented an algorithm for computing the VC dimension in the discrete setting, assuming that both the concept class and domain set were finite. However, no attempts had been made to design an algorithm that could compute the VC dimension in the general setting.Therefore, our work focuses on developing a method to approximately compute the VC dimension without constraints on the concept classes or their domain set. Our approach is based on our finding that the Empirical Risk Minimization (ERM) learning paradigm can be used as a new tool to characterize the shattering property of a concept class.
Submitted: Aug 19, 2023