Paper ID: 2309.02157

Model-based Offline Policy Optimization with Adversarial Network

Junming Yang, Xingguo Chen, Shengyuan Wang, Bolei Zhang

Model-based offline reinforcement learning (RL), which builds a supervised transition model with logging dataset to avoid costly interactions with the online environment, has been a promising approach for offline policy optimization. As the discrepancy between the logging data and online environment may result in a distributional shift problem, many prior works have studied how to build robust transition models conservatively and estimate the model uncertainty accurately. However, the over-conservatism can limit the exploration of the agent, and the uncertainty estimates may be unreliable. In this work, we propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN). The key idea is to use adversarial learning to build a transition model with better generalization, where an adversary is introduced to distinguish between in-distribution and out-of-distribution samples. Moreover, the adversary can naturally provide a quantification of the model's uncertainty with theoretical guarantees. Extensive experiments showed that our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks. It can also generate diverse in-distribution samples, and quantify the uncertainty more accurately.

Submitted: Sep 5, 2023