Paper ID: 2309.03133
Risk-reducing design and operations toolkit: 90 strategies for managing risk and uncertainty in decision problems
Alexander Gutfraind
Uncertainty is a pervasive challenge in decision analysis, and decision theory recognizes two classes of solutions: probabilistic models and cognitive heuristics. However, engineers, public planners and other decision-makers instead use a third class of strategies that could be called RDOT (Risk-reducing Design and Operations Toolkit). These include incorporating robustness into designs, contingency planning, and others that do not fall into the categories of probabilistic models or cognitive heuristics. Moreover, identical strategies appear in several domains and disciplines, pointing to an important shared toolkit. The focus of this paper is to develop a catalog of such strategies and develop a framework for them. The paper finds more than 90 examples of such strategies falling into six broad categories and argues that they provide an efficient response to decision problems that are seemingly intractable due to high uncertainty. It then proposes a framework to incorporate them into decision theory using multi-objective optimization. Overall, RDOT represents an overlooked class of responses to uncertainty. Because RDOT strategies do not depend on accurate forecasting or estimation, they could be applied fruitfully to certain decision problems affected by high uncertainty and make them much more tractable.
Submitted: Sep 6, 2023