Paper ID: 2309.07176
Optimal and Fair Encouragement Policy Evaluation and Learning
Angela Zhou
In consequential domains, it is often impossible to compel individuals to take treatment, so that optimal policy rules are merely suggestions in the presence of human non-adherence to treatment recommendations. In these same domains, there may be heterogeneity both in who responds in taking-up treatment, and heterogeneity in treatment efficacy. While optimal treatment rules can maximize causal outcomes across the population, access parity constraints or other fairness considerations can be relevant in the case of encouragement. For example, in social services, a persistent puzzle is the gap in take-up of beneficial services among those who may benefit from them the most. When in addition the decision-maker has distributional preferences over both access and average outcomes, the optimal decision rule changes. We study causal identification, statistical variance-reduced estimation, and robust estimation of optimal treatment rules, including under potential violations of positivity. We consider fairness constraints such as demographic parity in treatment take-up, and other constraints, via constrained optimization. Our framework can be extended to handle algorithmic recommendations under an often-reasonable covariate-conditional exclusion restriction, using our robustness checks for lack of positivity in the recommendation. We develop a two-stage algorithm for solving over parametrized policy classes under general constraints to obtain variance-sensitive regret bounds. We illustrate the methods in two case studies based on data from randomized encouragement to enroll in insurance and from pretrial supervised release with electronic monitoring.
Submitted: Sep 12, 2023