Paper ID: 2310.10970
Deep Learning based Spatially Dependent Acoustical Properties Recovery
Ruixian Liu, Peter Gerstoft
The physics-informed neural network (PINN) is capable of recovering partial differential equation (PDE) coefficients that remain constant throughout the spatial domain directly from physical measurements. In this work, we propose a spatially dependent physics-informed neural network (SD-PINN), which enables the recovery of coefficients in spatially-dependent PDEs using a single neural network, eliminating the requirement for domain-specific physical expertise. We apply the SD-PINN to spatially-dependent wave equation coefficients recovery to reveal the spatial distribution of acoustical properties in the inhomogeneous medium. The proposed method exhibits robustness to noise owing to the incorporation of a loss function for the physical constraint that the assumed PDE must be satisfied. For the coefficients recovery of spatially two-dimensional PDEs, we store the PDE coefficients at all locations in the 2D region of interest into a matrix and incorporate the low-rank assumption for such a matrix to recover the coefficients at locations without available measurements.
Submitted: Oct 17, 2023