Paper ID: 2310.13818
FATA-Trans: Field And Time-Aware Transformer for Sequential Tabular Data
Dongyu Zhang, Liang Wang, Xin Dai, Shubham Jain, Junpeng Wang, Yujie Fan, Chin-Chia Michael Yeh, Yan Zheng, Zhongfang Zhuang, Wei Zhang
Sequential tabular data is one of the most commonly used data types in real-world applications. Different from conventional tabular data, where rows in a table are independent, sequential tabular data contains rich contextual and sequential information, where some fields are dynamically changing over time and others are static. Existing transformer-based approaches analyzing sequential tabular data overlook the differences between dynamic and static fields by replicating and filling static fields into each transformer, and ignore temporal information between rows, which leads to three major disadvantages: (1) computational overhead, (2) artificially simplified data for masked language modeling pre-training task that may yield less meaningful representations, and (3) disregarding the temporal behavioral patterns implied by time intervals. In this work, we propose FATA-Trans, a model with two field transformers for modeling sequential tabular data, where each processes static and dynamic field information separately. FATA-Trans is field- and time-aware for sequential tabular data. The field-type embedding in the method enables FATA-Trans to capture differences between static and dynamic fields. The time-aware position embedding exploits both order and time interval information between rows, which helps the model detect underlying temporal behavior in a sequence. Our experiments on three benchmark datasets demonstrate that the learned representations from FATA-Trans consistently outperform state-of-the-art solutions in the downstream tasks. We also present visualization studies to highlight the insights captured by the learned representations, enhancing our understanding of the underlying data. Our codes are available at https://github.com/zdy93/FATA-Trans.
Submitted: Oct 20, 2023