Paper ID: 2310.13836
Foundation Model's Embedded Representations May Detect Distribution Shift
Max Vargas, Adam Tsou, Andrew Engel, Tony Chiang
Sampling biases can cause distribution shifts between train and test datasets for supervised learning tasks, obscuring our ability to understand the generalization capacity of a model. This is especially important considering the wide adoption of pre-trained foundational neural networks -- whose behavior remains poorly understood -- for transfer learning (TL) tasks. We present a case study for TL on the Sentiment140 dataset and show that many pre-trained foundation models encode different representations of Sentiment140's manually curated test set $M$ from the automatically labeled training set $P$, confirming that a distribution shift has occurred. We argue training on $P$ and measuring performance on $M$ is a biased measure of generalization. Experiments on pre-trained GPT-2 show that the features learnable from $P$ do not improve (and in fact hamper) performance on $M$. Linear probes on pre-trained GPT-2's representations are robust and may even outperform overall fine-tuning, implying a fundamental importance for discerning distribution shift in train/test splits for model interpretation.
Submitted: Oct 20, 2023