Paper ID: 2311.04049
3D EAGAN: 3D edge-aware attention generative adversarial network for prostate segmentation in transrectal ultrasound images
Mengqing Liu, Xiao Shao, Liping Jiang, Kaizhi Wu
Automatic prostate segmentation in TRUS images has always been a challenging problem, since prostates in TRUS images have ambiguous boundaries and inhomogeneous intensity distribution. Although many prostate segmentation methods have been proposed, they still need to be improved due to the lack of sensibility to edge information. Consequently, the objective of this study is to devise a highly effective prostate segmentation method that overcomes these limitations and achieves accurate segmentation of prostates in TRUS images. A 3D edge-aware attention generative adversarial network (3D EAGAN)-based prostate segmentation method is proposed in this paper, which consists of an edge-aware segmentation network (EASNet) that performs the prostate segmentation and a discriminator network that distinguishes predicted prostates from real prostates. The proposed EASNet is composed of an encoder-decoder-based U-Net backbone network, a detail compensation module, four 3D spatial and channel attention modules, an edge enhance module, and a global feature extractor. The detail compensation module is proposed to compensate for the loss of detailed information caused by the down-sampling process of the encoder. The features of the detail compensation module are selectively enhanced by the 3D spatial and channel attention module. Furthermore, an edge enhance module is proposed to guide shallow layers in the EASNet to focus on contour and edge information in prostates. Finally, features from shallow layers and hierarchical features from the decoder module are fused through the global feature extractor to predict the segmentation prostates.
Submitted: Nov 7, 2023