Paper ID: 2311.06390

ChatGPT in the context of precision agriculture data analytics

Ilyas Potamitis

In this study we argue that integrating ChatGPT into the data processing pipeline of automated sensors in precision agriculture has the potential to bring several benefits and enhance various aspects of modern farming practices. Policy makers often face a barrier when they need to get informed about the situation in vast agricultural fields to reach to decisions. They depend on the close collaboration between agricultural experts in the field, data analysts, and technology providers to create interdisciplinary teams that cannot always be secured on demand or establish effective communication across these diverse domains to respond in real-time. In this work we argue that the speech recognition input modality of ChatGPT provides a more intuitive and natural way for policy makers to interact with the database of the server of an agricultural data processing system to which a large, dispersed network of automated insect traps and sensors probes reports. The large language models map the speech input to text, allowing the user to form its own version of unconstrained verbal query, raising the barrier of having to learn and adapt oneself to a specific data analytics software. The output of the language model can interact through Python code and Pandas with the entire database, visualize the results and use speech synthesis to engage the user in an iterative and refining discussion related to the data. We show three ways of how ChatGPT can interact with the database of the remote server to which a dispersed network of different modalities (optical counters, vibration recordings, pictures, and video), report. We examine the potential and the validity of the response of ChatGPT in analyzing, and interpreting agricultural data, providing real time insights and recommendations to stakeholders

Submitted: Nov 10, 2023