Paper ID: 2311.07172

VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency

Vernon Toh, Ratish Puduppully, Nancy F. Chen

Large Language Models (LLMs) combined with program-based solving techniques are increasingly demonstrating proficiency in mathematical reasoning. However, such progress is mostly demonstrated in closed-source models such as OpenAI-GPT4 and Claude. In this paper, we seek to study the performance of strong open-source LLMs. Specifically, we analyze the outputs of Code Llama (7B) when applied to math word problems. We identify a category of problems that pose a challenge for the model, particularly those involving quantities that span multiple types or units. To address this issue, we propose a systematic approach by defining units for each quantity and ensuring the consistency of these units during mathematical operations. We developed Unit Consistency Programs (UCPs), an annotated dataset of math word problems, each paired with programs that contain unit specifications and unit verification routines. Finally, we finetune the Code Llama (7B) model with UCPs to produce VerityMath and present our preliminary findings.

Submitted: Nov 13, 2023