Paper ID: 2311.07175

Research and experimental verification on low-frequency long-range sound propagation characteristics under ice-covered and range-dependent marine environment in the Arctic

Jinbao Weng, Yubo Qi, Yanming Yang, Hongtao Wen, Hongtao Zhou, Ruichao Xue

At present, research on sound propagation under the Arctic ice mainly focuses on modeling and experimental verification of sound propagation under sea ice cover and unique sound velocity profiles. Among them, the main research object of concern is sound transmission loss, and this article will delve into the time-domain waveform and fine dispersion structure of low-frequency broadband acoustic signals. Firstly, based on the theory of normal modes, this article derives the horizontal wavenumber expression and warping transformation operator for refractive normal modes in the Arctic deep-sea environment. Subsequently, based on measured ocean environmental parameters and sound field simulation calculations, this article studied the general laws of low-frequency long-range sound propagation signals in the Arctic deep-sea environment, and elucidated the impact mechanism of environmental factors such as seabed terrain changes, horizontal changes in sound velocity profiles (SSPs), and sea ice cover on low-frequency long-range sound propagation in the Arctic. This article validates the above research viewpoint through a sound propagation experiment conducted in the Arctic with a propagation distance exceeding 1000km. The marine environment of this experiment has obvious horizontal variation characteristics. At the same time, this article takes the lead in utilizing the warping transformation of refractive normal waves in the Arctic waters to achieve single hydrophone based separation of normal waves and extraction of dispersion structures, which is conducive to future research on underwater sound source localization and environmental parameter inversion based on dispersion structures.

Submitted: Nov 13, 2023