Paper ID: 2311.08149

Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes

Cécile Trottet, Manuel Schürch, Ahmed Allam, Imon Barua, Liubov Petelytska, Oliver Distler, Anna-Maria Hoffmann-Vold, Michael Krauthammer, the EUSTAR collaborators

In this paper, we propose a deep generative time series approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories. We aim to find meaningful temporal latent representations of an underlying generative process that explain the observed disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical concepts. By combining the generative approach with medical knowledge, we leverage the ability to discover novel aspects of the disease while integrating medical concepts into the model. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering the disease into new sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series including uncertainty quantification. We demonstrate the effectiveness of our approach in modeling systemic sclerosis, showcasing the potential of our machine learning model to capture complex disease trajectories and acquire new medical knowledge.

Submitted: Nov 14, 2023