Paper ID: 2311.08269

Defining the boundaries: challenges and advances in identifying cells in microscopy images

Nodar Gogoberidze, Beth A. Cimini

Segmentation, or the outlining of objects within images, is a critical step in the measurement and analysis of cells within microscopy images. While improvements continue to be made in tools that rely on classical methods for segmentation, deep learning-based tools increasingly dominate advances in the technology. Specialist models such as Cellpose continue to improve in accuracy and user-friendliness, and segmentation challenges such as the Multi-Modality Cell Segmentation Challenge continue to push innovation in accuracy across widely-varying test data as well as efficiency and usability. Increased attention on documentation, sharing, and evaluation standards are leading to increased user-friendliness and acceleration towards the goal of a truly universal method.

Submitted: Nov 14, 2023