Paper ID: 2311.09675

Where Do People Tell Stories Online? Story Detection Across Online Communities

Maria Antoniak, Joel Mire, Maarten Sap, Elliott Ash, Andrew Piper

Story detection in online communities is a challenging task as stories are scattered across communities and interwoven with non-storytelling spans within a single text. We address this challenge by building and releasing the StorySeeker toolkit, including a richly annotated dataset of 502 Reddit posts and comments, a detailed codebook adapted to the social media context, and models to predict storytelling at the document and span level. Our dataset is sampled from hundreds of popular English-language Reddit communities ranging across 33 topic categories, and it contains fine-grained expert annotations, including binary story labels, story spans, and event spans. We evaluate a range of detection methods using our data, and we identify the distinctive textual features of online storytelling, focusing on storytelling span detection, which we introduce as a new task. We illuminate distributional characteristics of storytelling on a large community-centric social media platform, and we also conduct a case study on r/ChangeMyView, where storytelling is used as one of many persuasive strategies, illustrating that our data and models can be used for both inter- and intra-community research. Finally, we discuss implications of our tools and analyses for narratology and the study of online communities.

Submitted: Nov 16, 2023