Paper ID: 2311.14208
ECRF: Entropy-Constrained Neural Radiance Fields Compression with Frequency Domain Optimization
Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, Cornelius Hellge
Explicit feature-grid based NeRF models have shown promising results in terms of rendering quality and significant speed-up in training. However, these methods often require a significant amount of data to represent a single scene or object. In this work, we present a compression model that aims to minimize the entropy in the frequency domain in order to effectively reduce the data size. First, we propose using the discrete cosine transform (DCT) on the tensorial radiance fields to compress the feature-grid. This feature-grid is transformed into coefficients, which are then quantized and entropy encoded, following a similar approach to the traditional video coding pipeline. Furthermore, to achieve a higher level of sparsity, we propose using an entropy parameterization technique for the frequency domain, specifically for DCT coefficients of the feature-grid. Since the transformed coefficients are optimized during the training phase, the proposed model does not require any fine-tuning or additional information. Our model only requires a lightweight compression pipeline for encoding and decoding, making it easier to apply volumetric radiance field methods for real-world applications. Experimental results demonstrate that our proposed frequency domain entropy model can achieve superior compression performance across various datasets. The source code will be made publicly available.
Submitted: Nov 23, 2023