Paper ID: 2311.15683
Ultrasensitive Textile Strain Sensors Redefine Wearable Silent Speech Interfaces with High Machine Learning Efficiency
Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi G. Occhipinti
Our research presents a wearable Silent Speech Interface (SSI) technology that excels in device comfort, time-energy efficiency, and speech decoding accuracy for real-world use. We developed a biocompatible, durable textile choker with an embedded graphene-based strain sensor, capable of accurately detecting subtle throat movements. This sensor, surpassing other strain sensors in sensitivity by 420%, simplifies signal processing compared to traditional voice recognition methods. Our system uses a computationally efficient neural network, specifically a one-dimensional convolutional neural network with residual structures, to decode speech signals. This network is energy and time-efficient, reducing computational load by 90% while achieving 95.25% accuracy for a 20-word lexicon and swiftly adapting to new users and words with minimal samples. This innovation demonstrates a practical, sensitive, and precise wearable SSI suitable for daily communication applications.
Submitted: Nov 27, 2023