Paper ID: 2311.17929

New Online Communities: Graph Deep Learning on Anonymous Voting Networks to Identify Sybils in Polycentric Governance

Quinn DuPont

This research examines the polycentric governance of digital assets in blockchain-based Decentralized Autonomous Organizations (DAOs). It offers a theoretical framework and addresses a critical challenge facing decentralized governance by developing a method to identify Sybils, or spurious identities. Sybils pose significant organizational sustainability threats to DAOs and other, commons-based online communities, and threat models are identified. The experimental method uses an autoencoder architecture and graph deep learning techniques to identify Sybil activity in a DAO governance dataset (snapshot.org). Specifically, a Graph Convolutional Neural Network (GCNN) learned voting behaviours and a fast vector clustering algorithm used high-dimensional embeddings to identify similar nodes in a graph. The results reveal that deep learning can effectively identify Sybils, reducing the voting graph by 2-5%. This research underscores the importance of Sybil resistance in DAOs, identifies challenges and opportunities for forensics and analysis of anonymous networks, and offers a novel perspective on decentralized governance, informing future policy, regulation, and governance practices.

Submitted: Nov 25, 2023