Paper ID: 2312.00462
Learning Unorthogonalized Matrices for Rotation Estimation
Kerui Gu, Zhihao Li, Shiyong Liu, Jianzhuang Liu, Songcen Xu, Youliang Yan, Michael Bi Mi, Kenji Kawaguchi, Angela Yao
Estimating 3D rotations is a common procedure for 3D computer vision. The accuracy depends heavily on the rotation representation. One form of representation -- rotation matrices -- is popular due to its continuity, especially for pose estimation tasks. The learning process usually incorporates orthogonalization to ensure orthonormal matrices. Our work reveals, through gradient analysis, that common orthogonalization procedures based on the Gram-Schmidt process and singular value decomposition will slow down training efficiency. To this end, we advocate removing orthogonalization from the learning process and learning unorthogonalized `Pseudo' Rotation Matrices (PRoM). An optimization analysis shows that PRoM converges faster and to a better solution. By replacing the orthogonalization incorporated representation with our proposed PRoM in various rotation-related tasks, we achieve state-of-the-art results on large-scale benchmarks for human pose estimation.
Submitted: Dec 1, 2023