Paper ID: 2312.01081

Adaptive Resource Allocation for Semantic Communication Networks

Lingyi Wang, Wei Wu, Fuhui Zhou, Zhaohui Yang, Zhijin Qin

Semantic communication, recognized as a promising technology for future intelligent applications, has received widespread research attention. Despite the potential of semantic communication to enhance transmission reliability, especially in low signal-to-noise (SNR) environments, the critical issue of resource allocation and compatibility in the dynamic wireless environment remains largely unexplored. In this paper, we propose an adaptive semantic resource allocation paradigm with semantic-bit quantization (SBQ) compatibly for existing wireless communications, where the inaccurate environment perception introduced by the additional mapping relationship between semantic metrics and transmission metrics is solved. In order to investigate the performance of semantic communication networks, the quality of service for semantic communication (SC-QoS), including the semantic quantization efficiency (SQE) and transmission latency, is proposed for the first time. A problem of maximizing the overall effective SC-QoS is formulated by jointly optimizing the transmit beamforming of the base station, the bits for semantic representation, the subchannel assignment, and the bandwidth resource allocation. To address the non-convex formulated problem, an intelligent resource allocation scheme is proposed based on a hybrid deep reinforcement learning (DRL) algorithm, where the intelligent agent can perceive both semantic tasks and dynamic wireless environments. Simulation results demonstrate that our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes. Furthermore, compared to mapping-guided paradigm based resource allocation schemes, our proposed adaptive scheme can achieve up to 13% performance improvement in terms of SC-QoS.

Submitted: Dec 2, 2023