Paper ID: 2312.03723

ChatGPT Application In Summarizing An Evolution Of Deep Learning Techniques In Imaging: A Qualitative Study

Arman Sarraf, Amirabbas Abbaspour

The pursuit of article or text summarization has captured the attention of natural language processing (NLP) practitioners, presenting itself as a formidable challenge. ChatGPT 3.5 exhibits the capacity to condense the content of up to 3000 tokens into a single page, aiming to retain pivotal information from a given text across diverse themes. In a conducted qualitative research endeavor, we selected seven scientific articles and employed the publicly available ChatGPT service to generate summaries of these articles. Subsequently, we engaged six co-authors of the articles in a survey, presenting five questions to evaluate the quality of the summaries compared to the original content. The findings revealed that the summaries produced by ChatGPT effectively encapsulated the crucial information present in the articles, preserving the principal message of each manuscript. Nonetheless, there was a slight diminishment in the technical depth of the summaries as opposed to the original articles. As a result, our conclusion underscores ChatGPT's text summarization capability as a potent tool for extracting essential insights in a manner more aligned with reporting than purely scientific discourse.

Submitted: Nov 26, 2023