Paper ID: 2312.10879
Development and Evaluation of Ensemble Learning-based Environmental Methane Detection and Intensity Prediction Models
Reek Majumder, Jacquan Pollard, M Sabbir Salek, David Werth, Gurcan Comert, Adrian Gale, Sakib Mahmud Khan, Samuel Darko, Mashrur Chowdhury
The environmental impacts of global warming driven by methane (CH4) emissions have catalyzed significant research initiatives in developing novel technologies that enable proactive and rapid detection of CH4. Several data-driven machine learning (ML) models were tested to determine how well they identified fugitive CH4 and its related intensity in the affected areas. Various meteorological characteristics, including wind speed, temperature, pressure, relative humidity, water vapor, and heat flux, were included in the simulation. We used the ensemble learning method to determine the best-performing weighted ensemble ML models built upon several weaker lower-layer ML models to (i) detect the presence of CH4 as a classification problem and (ii) predict the intensity of CH4 as a regression problem.
Submitted: Dec 18, 2023