Paper ID: 2312.14999
Leveraging Habitat Information for Fine-grained Bird Identification
Tin Nguyen, Anh Nguyen
Traditional bird classifiers mostly rely on the visual characteristics of birds. Some prior works even train classifiers to be invariant to the background, completely discarding the living environment of birds. Instead, we are the first to explore integrating habitat information, one of the four major cues for identifying birds by ornithologists, into modern bird classifiers. We focus on two leading model types: (1) CNNs and ViTs trained on the downstream bird datasets; and (2) original, multi-modal CLIP. Training CNNs and ViTs with habitat-augmented data results in an improvement of up to +0.83 and +0.23 points on NABirds and CUB-200, respectively. Similarly, adding habitat descriptors to the prompts for CLIP yields a substantial accuracy boost of up to +0.99 and +1.1 points on NABirds and CUB-200, respectively. We find consistent accuracy improvement after integrating habitat features into the image augmentation process and into the textual descriptors of vision-language CLIP classifiers. Code is available at: https://anonymous.4open.science/r/reasoning-8B7E/.
Submitted: Dec 22, 2023