Paper ID: 2312.15388

DEAP: Design Space Exploration for DNN Accelerator Parallelism

Ekansh Agrawal, Xiangyu Sam Xu

The boom in Large Language Models (LLMs) like GPT-4 and ChatGPT has marked a significant advancement in artificial intelligence. These models are becoming increasingly complex and powerful to train and serve. This growth in capabilities comes with a substantial increase in computational requirements, both in terms of hardware resources and energy consumption. The goal of this paper is to showcase how hardware and software co-design can come together and allow us to create customized hardware systems for specific LLM workloads. We propose a simulation workflow that allows us to combine model parallelism techniques with a multi-accelerator simulation framework for efficiency metrics. We focus on inference workloads and report power, cycle, and latency metrics upon performing a design space exploration search over multiple software and hardware configurations.

Submitted: Dec 24, 2023