Paper ID: 2312.16142
A Bayesian Framework of Deep Reinforcement Learning for Joint O-RAN/MEC Orchestration
Fahri Wisnu Murti, Samad Ali, Matti Latva-aho
Multi-access Edge Computing (MEC) can be implemented together with Open Radio Access Network (O-RAN) over commodity platforms to offer low-cost deployment and bring the services closer to end-users. In this paper, a joint O-RAN/MEC orchestration using a Bayesian deep reinforcement learning (RL)-based framework is proposed that jointly controls the O-RAN functional splits, the allocated resources and hosting locations of the O-RAN/MEC services across geo-distributed platforms, and the routing for each O-RAN/MEC data flow. The goal is to minimize the long-term overall network operation cost and maximize the MEC performance criterion while adapting possibly time-varying O-RAN/MEC demands and resource availability. This orchestration problem is formulated as Markov decision process (MDP). However, the system consists of multiple BSs that share the same resources and serve heterogeneous demands, where their parameters have non-trivial relations. Consequently, finding the exact model of the underlying system is impractical, and the formulated MDP renders in a large state space with multi-dimensional discrete action. To address such modeling and dimensionality issues, a novel model-free RL agent is proposed for our solution framework. The agent is built from Double Deep Q-network (DDQN) that tackles the large state space and is then incorporated with action branching, an action decomposition method that effectively addresses the multi-dimensional discrete action with linear increase complexity. Further, an efficient exploration-exploitation strategy under a Bayesian framework using Thomson sampling is proposed to improve the learning performance and expedite its convergence. Trace-driven simulations are performed using an O-RAN-compliant model. The results show that our approach is data-efficient (i.e., converges faster) and increases the returned reward by 32\% than its non-Bayesian version.
Submitted: Dec 26, 2023