Paper ID: 2401.00209

AI and Tempo Estimation: A Review

Geoff Luck

The author's goal in this paper is to explore how artificial intelligence (AI) has been utilised to inform our understanding of and ability to estimate at scale a critical aspect of musical creativity - musical tempo. The central importance of tempo to musical creativity can be seen in how it is used to express specific emotions (Eerola and Vuoskoski 2013), suggest particular musical styles (Li and Chan 2011), influence perception of expression (Webster and Weir 2005) and mediate the urge to move one's body in time to the music (Burger et al. 2014). Traditional tempo estimation methods typically detect signal periodicities that reflect the underlying rhythmic structure of the music, often using some form of autocorrelation of the amplitude envelope (Lartillot and Toiviainen 2007). Recently, AI-based methods utilising convolutional or recurrent neural networks (CNNs, RNNs) on spectral representations of the audio signal have enjoyed significant improvements in accuracy (Aarabi and Peeters 2022). Common AI-based techniques include those based on probability (e.g., Bayesian approaches, hidden Markov models (HMM)), classification and statistical learning (e.g., support vector machines (SVM)), and artificial neural networks (ANNs) (e.g., self-organising maps (SOMs), CNNs, RNNs, deep learning (DL)). The aim here is to provide an overview of some of the more common AI-based tempo estimation algorithms and to shine a light on notable benefits and potential drawbacks of each. Limitations of AI in this field in general are also considered, as is the capacity for such methods to account for idiosyncrasies inherent in tempo perception, i.e., how well AI-based approaches are able to think and act like humans.

Submitted: Dec 30, 2023