Paper ID: 2401.01817

Many-Objective-Optimized Semi-Automated Robotic Disassembly Sequences

Takuya Kiyokawa, Kensuke Harada, Weiwei Wan, Tomoki Ishikura, Naoya Miyaji, Genichiro Matsuda

This study tasckles the problem of many-objective sequence optimization for semi-automated robotic disassembly operations. To this end, we employ a many-objective genetic algorithm (MaOGA) algorithm inspired by the Non-dominated Sorting Genetic Algorithm (NSGA)-III, along with robotic-disassembly-oriented constraints and objective functions derived from geometrical and robot simulations using 3-dimensional (3D) geometrical information stored in a 3D Computer-Aided Design (CAD) model of the target product. The MaOGA begins by generating a set of initial chromosomes based on a contact and connection graph (CCG), rather than random chromosomes, to avoid falling into a local minimum and yield repeatable convergence. The optimization imposes constraints on feasibility and stability as well as objective functions regarding difficulty, efficiency, prioritization, and allocability to generate a sequence that satisfies many preferred conditions under mandatory requirements for semi-automated robotic disassembly. The NSGA-III-inspired MaOGA also utilizes non-dominated sorting and niching with reference lines to further encourage steady and stable exploration and uniformly lower the overall evaluation values. Our sequence generation experiments for a complex product (36 parts) demonstrated that the proposed method can consistently produce feasible and stable sequences with a 100% success rate, bringing the multiple preferred conditions closer to the optimal solution required for semi-automated robotic disassembly operations.

Submitted: Jan 3, 2024