Paper ID: 2401.04212
Towards a Machine Learning-Based Approach to Predict Space Object Density Distributions
Victor Rodriguez-Fernandez, Sumiyajav Sarangerel, Peng Mun Siew, Pablo Machuca, Daniel Jang, Richard Linares
With the rapid increase in the number of Anthropogenic Space Objects (ASOs), Low Earth Orbit (LEO) is facing significant congestion, thereby posing challenges to space operators and risking the viability of the space environment for varied uses. Current models for examining this evolution, while detailed, are computationally demanding. To address these issues, we propose a novel machine learning-based model, as an extension of the MIT Orbital Capacity Tool (MOCAT). This advanced model is designed to accelerate the propagation of ASO density distributions, and it is trained on hundreds of simulations generated by an established and accurate model of the space environment evolution. We study how different deep learning-based solutions can potentially be good candidates for ASO propagation and manage the high-dimensionality of the data. To assess the model's capabilities, we conduct experiments in long term forecasting scenarios (around 100 years), analyze how and why the performance degrades over time, and discuss potential solutions to make this solution better.
Submitted: Jan 8, 2024